《茎叶图》教案
- 资源简介:
此资源为用户分享,在本站免费下载,只限于您用于个人教学研究。
约1460字。
《茎叶图》教案
教学目标
(1)掌握茎叶图的意义及画法,并能在实际问题中用茎叶图用数据统计;
(2)通过实例体会频率分布直方图、频率折线图、茎叶图的各自特征,从而恰当地选择上述方法分析样本的分布,准确地做出总体估计.
教学重点
茎叶图的意义及画法.
教学难点
茎叶图用数据统计.
教学过程
一、复习练习:
为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数次测试,将所得数据整理后,画出频率分布直方图(如图),图中从左到右各小长方形面积之比为2:4:17:15:9:3,第二小组频数为12.
(1) 第二小组的频率是多少?样本容量是多少?
(2) 若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少?
(3) 在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由。
分析:在频率分布直方图中,各小长方形的面积等于相应各组的频率,小长方形的高与频数成正比,各组频数之和等于样本容量,频率之和等于1。
解:(1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小,
因此第二小组的频率为:
又因为频率=
所以
(2)由图可估计该学校高一学生的达标率约为
(3)由已知可得各小组的频数依次为6,12,51,45,27,9,所以前三组的频数之和为69,前四组的频数之和为114,所以跳绳次数的中位数落在第四小组.
二、问题情境
1.情境:某篮球运动员在某赛季各场比赛的得分情况如下:
12,15,24,25,31,31,36,36,37,39,44,49,50.
2.问题:如何有条理地列出这些数据,分析该运动员的整体水平及发挥的稳定程度?
三、建构数学
1.茎叶图的概念:
一般地:当数据是一位和两位有效数字时,用中间的数字表示十位数,即第一个有效数字,两边的数字表示个位数,即第二个有效数字,它的中间部分像植物的茎,两边部分像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶图。茎按从小到大的顺序从上向下列出,共茎的叶一般按从大到小(或从小到大)的顺序同行列出。